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Abstract—This paper describes the solvers P-MCOMSPS and
P-MCOMSPS-COM submitted to the parallel track of the
SAT Competition 2021; as well as P-MCOMSPS-MPI and
P-MCOMSPS-COM-MPI submitted to the cloud track of the SAT
Competition 2021. P-MCOMSPS and P-MCOMSPS-MPI are LBD-
based, and P-MCOMSPS-COM and P-MCOMSPS-COM-MPI are
community and LBD-based.

I. INTRODUCTION

P-MCOMSPS is a concurrent SAT solver built by using
the Painless framework [1]. It is a portfolio-based [2]
solver implementing a diversification strategy [3], fine con-
trol of learnt clause exchanges [4] based on LBD [5],
using MapleCOMSPS [6] as a core sequential solver,
and where learnt clause strengthening [7] has been inte-
grated. P-MCOMSPS-COM is based on P-MCOMSPS and
uses COM and LBD sharing [8]. P-MCOMSPS-MPI (resp.
P-MCOMSPS-COM-MPI) is a distributed solver using on each
node P-MCOMSPS (resp. P-MCOMSPS-COM), and relying on
MPI for termination and clause sharing between nodes.

Section II details the implementation of P-MCOMSPS us-
ing Painless and MapleCOMSPS. Section III explains
how community and LBD sharing has been implemented
in P-MCOMSPS-COM. Finally, section IV explains how
our concurrent solvers have been adapted to implement
P-MCOMSPS-MPI and P-MCOMSPS-COM-MPI.

II. P-MCOMSPS
This section describes the overall behaviour of our compet-

ing instantiation named P-MCOMSPS. Its architecture is high-
lighted in Fig. 1. It implements the Painless strengthening
described in [9].

A. MapleCOMSPS
MapleCOMSPS [6] has been adapted for the parallel con-

text as follows: (1) we parametrized the solver to use either
LRB [10], or VSIDS [11] (resp. L and V); (2) we added
callbacks to export and import clauses; (3) we added an option
to activate or not the Gaussian elimination (GE) preprocessing;
(4) we parametrized the solver to use as a variable score
comparator either < or <= (resp. head: H and tail: T).
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Fig. 1. Architecture of P-MCOMSPS

B. Strengthener

Two reducer engines (R in Fig. 1) implement the algorithm
introduced in [7]. We implemented the strengthening operation
as a decorator of SolverInterface. This decorator uses, by
delegation, another SolverInterface to apply the strengthening,
in the present case a MapleCOMSPS solver.

C. Portfolio and Diversification

As depicted in Fig. 1, P-MCOMSPS implements a portfolio
strategy (PF), where two solvers are used as reducers, and
the other underlying core engines are either LH, LT, VH
or VT instances (i.e., combination of V or L, and H or
T). For each type of instances, we apply a sparse random



diversification [3]. Moreover, only one of the solvers performs
the GE preprocessing.

D. Controlling the Flow of Shared Clauses

In P-MCOMSPS, the sharing strategy ControlFlow is
inspired by the one used by [3], [4]. As highlighted in Fig. 1,
we instantiate two sharers, for each half of the solvers and one
reducer are producers. It gets clauses from this producer and
exports some of them to all others (the consumers).

The exchange strategy is defined as follows: each solver
exports clauses having an LBD value under a given threshold
(2 at the beginning). Every 1.5 seconds, 1500 literals (the
sum of the size of the shared clauses) are selected from each
producer by the sharers and dispatched to consumers. The
LBD threshold of the concerned solver is increased (resp.
decreased) if an insufficient (resp. a too big) number of literals
are dispatched (75% and 98%).

E. Online Strengthening

There is one reducer engine that is both consumer and
producer in each of the two sharing groups. It receives clauses
from half of the sequential solvers, strengthened them, in case
of success it then exports them back. The sharing mechanism
will then share this strengthened clauses to all the other
solvers. Since a strengthened clause subsumes the original one,
it is likely that cores will forget the original clause over time.

III. P-MCOMSPS-COM

P-MCOMSPS-COM has exactly the same behaviour than
P-MCOMSPS except for its clause sharing policy where
clauses are filtered through community and LBD as presented
in [8].

A. Community Structure

It is well admitted that real-life SAT formulas exhibit
notable “structures”. One way to highlight such structures is
to represent the formula as a graph and analyze its community
structure [12]. In P-MCOMSPS-COM, community structure is
computed using the Louvain method [13] on the variable
incident graph (VIG) of the simplified formula. The result is a
disjoint partition of the variables present in the formula. Since
this process can take some time, only one of the solver is
responsible for the computation; until it ends sharing is based
only on LBD as in P-MCOMSPS.

B. Community and LBD Sharing

We call ”COM of a clause” the number of communities
in which a clause spans. To compute the COM of a clause,
we consider the variables corresponding to the literals of the
clause and we count the number of distinct communities rep-
resented by these variables. When information on community
structure is available, sharing policy switches and clauses are
filtered using COM and LBD: shared clauses are those with
LBD ≤ 3 or (LBD ≤ 4 and COM ≤ 3); this threshold has
been highlighted in [8].

IV. P-MCOMSPS-MPI AND P-MCOMSPS-COM-MPI

This section presents P-MCOMSPS-MPI (reps.
P-MCOMSPS-COM-MPI) which is a distributed adaptation
of P-MCOMSPS (resp. P-MCOMSPS-COM). In order to adapt
our concurrent solvers for the cloud track we added distant
clause sharing, and termination. Moreover, since in the cloud
track nodes have less CPUs, underlying concurrent solvers
only use one reducer and one sharing group.

A. Distant Clause Sharing
On each node a concurrent solver (described in pre-

vious sections) runs. We added a component called
VirtualSolverAsynchronous which supports the MPI-
based communications between nodes. This solver receives
clauses from other workers on the same node and send them
to the other nodes. It also receives distant clauses (from other
VirtualSolverAsynchronous) which are spread over
the local node using the classical sharing mechanism.

B. Termination
Termination is handled by regularly synchronising main

threads of each concurrent solver and is implemented thanks
to the MPI_Allgather function.
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[12] C. Ansótegui, J. Giráldez-Cru, and J. Levy, “The community structure
of sat formulas,” in int. conf. on Theory and Applications of Satisfiability
Testing, pp. 410–423, Springer, 2012.

[13] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.


