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Abstract—This document describes the SAT solver MapleSSV,
as part of which we implemented a set of heuristics that are
found to be useful in solving SAT benchmarks that encode ARX
(Addition-Rotation-XOR) functions. These heuristics are inspired
by machine learning-based optimization methods, namely, im-
proving branching using exploration, Bayesian moment match-
ing based search initialization, and multi-armed bandit based
restarts.

I. INTRODUCTION

We present the SAT solver MapleSSV, which is a modifica-
tion of the SAT solver MapleLCMDistChronoBT [1] (winner
of the SAT competition 2018). There are four main modifica-
tions that we made to the base solver, enhancing branching,
search initialization, restarts, and pre-processing. First, we
used exploration in phases that the solver goes into a conflict
depression (large sequences of decisions without learning any
clauses) to get the solver to a more fruitful sub-space. Second,
we used a Bayesian moment matching formulation of SAT to
arrive at a promising initial search point, initializing variable
order and polarities. Third, we employed multi-armed bandit
based restarts to adaptively choose between restart strategies.
Finally, we added XOR pre-processing to simplify the formula.
Sections II, III and IV, describes each of these additions in
more detail.

Motivation for Machine Learning-based Solver Heuristics:
While a Boolean SAT solver is a decision procedure that
decides whether an input formula is satisfiable, internally it
can be seen as an optimization procedure whose goal is to
minimize its run time while correctly deciding the satisfiability
of the input formula. Every sub-routine in a SAT solver can
be viewed either as a logical reasoning engine (i.e., a proof
rules such as resolution in the case of conflict clause learning
scheme or unit resolution in the case of BCP), or as a heuristic
aimed at optimizing the sequencing, selection, and initializa-
tion of proof rules (e.g., variable selection, polarity selection,
restarts, etc.). These optimization heuristic can in turn be
implemented effectively using machine learning algorithms,
since solvers are a data-rich environment. This philosophy was
first articulated in the SAT 2016 paper by Liang et al. [2] on
the LRB branching heuristic, has since been widely adopted
and underpins many solver heuristics for branching, restarts,
and initialization developed in recent years.

II. EXPLORATION AMID CONFLICT DEPRESSION PHASES

Here we describe our exploration-based branching heuristic
expVSIDS. This approach is based on our observation that
CDCL SAT solving entails clear non-random patterns of bursts
of conflicts followed by longer phases of conflict depression
(CD) [3]. During a CD phase a CDCL SAT solver is unable
to generate conflicts for a consecutive number of decisions.
To correct the course of such a search, we propose to use
exploration to combat conflict depression. We therefore design
a new SAT solver, called expSAT, which uses random walks
in the context of CDCL SAT solving. In a conflict depression
phase, random walks help identify more promising variables
for branching. As a contrast, while exploration explores future
search states, LRB and VSIDS relies on conflicts generated
from the past search states. In [3], we proposed expVSIDS,
the exploration based extension of VSIDS. In addition to
expVSIDS, our submitted solver MapleSSV, uses expLRB,
the exploration based extension of LRB.

III. INITIALIZATION PROBLEM

Many modern branching heuristics in CDCL SAT solvers
assume that all variables have the same initial activity score
(typically 0) at the beginning of the run of a solver. However, it
is well known that a solver’s runtime can be greatly improved
if the initial order and value assignment of variables is not
fixed a priori but chosen via appropriate static analysis of the
formula. By the term initial variable order (resp., initial value
assignment), we refer to the order (resp. value assignment) at
the start of the run of a solver. This problem of determining
the optimal initial variable order and value assignment is often
referred to as the initialization problem.

In this work, we used a solution to the initialization problem
based on a Bayesian moment matching (BMM) formulation of
solving SAT instances and a concomitant method we refer to
as BMM-based initialization [4]. Our method is used as a pre-
processing step before the solver starts its search (i.e., before
it makes its first decision).

A. Bayesian Moment Matching (BMM)

The SAT problem, simply stated, is to determine whether a
given Boolean formula is satisfiable. In order to reformulate
the SAT problem in a Bayesian setting, we start by defining a
random variable for each variable of the input formula, where
P (x = T ) shows the probability of setting x to True in a



satisfying assignment, assuming the formula is satisfiable. We
assume that each of these variables has a Beta distribution,
and collectively they form our prior distribution. We have the
constraint that all of the clauses must be satisfied (i.e., it is
assumed that the formula is satisfiable), therefore the clauses
can be seen as evidence as to how the probability distribution
should look like such that they are all satisfied. We then apply
Bayesian inference using each clause as evidence to arrive at
a posterior distribution. Applying Bayesian inference, gives
us a mixture model, and this makes the learning intractable
as the number of components grows exponentially with the
number of clauses. To avoid this blow up, we use the method
of moments to approximate the mixture Beta distribution with
a single Beta distribution.

B. BMM as a Component in CDCL SAT Solvers

We implement an approximate version of the BMM method
described above to solver the initialization problem of CDCL
SAT solvers, since the complete method does not scale as
the size of the input formulas increase. Fortunately, this
approximate method is efficient and arrives at a promising
point, as it attempts to satisfy as many clauses as possible.
We take this starting point and initialize the preferred polarity
and activity scores of each variable of an input formula, and
then let the solver complete its search. The derived posterior
distribution collectively represents a probabilistic assignment
to the variables that satisfies most of the clauses. For polarity
initialization, we used: Polarity[x] = False if P (x = T ) <
0.5 and True otherwise. For activity initialization, we gave
higher priority to variables based on the confidence that BMM
has about their values, i.e., Activity[x] = max(P (x =
T ), 1 − P (x = T )). We initialized both VSIDS and LRB
scores with the aforementioned methods.

IV. MULTI-ARMED BANDIT RESTART

Many restart policies have been proposed in the SAT
literature [5], [6], in particular we focus on the uniform, linear,
Luby, and geometric restart policies [7]. For a given SAT
instance, we can not know a priori which of the 4 restart
policies will perform the best. To compensate for this, we use
multi-armed bandits (MAB) [8], a special case of reinforce-
ment learning, to switch between the 4 policies dynamically
during the run of the solver. We chose to use discounted UCB
algorithm [9] from MAB literature, as it accounts for the
non-stationary environment of the CDCL solver, in particular
changes in the learnt clause database over time. Discounted
UCB has 4 actions to choose from corresponding to the
uniform, linear, Luby, and geometric restart policies. Once the
action is selected, the solver proceeds to perform the CDCL
backtracking search until the chosen restart policy decides
to restart. The algorithm computes the average LBD of the
learnt clauses generated since the action was selected, and the
reciprocal of the average is the reward given to the selected
action. Intuitively, a restart policy which generates small LBDs
receives larger rewards and UCB increases the probability of
selecting that restart policy in the future. Over time, this biases

UCB towards restart policies that generate small LBDs for the
give input SAT instance [10].

V. AVAILABILITY AND LICENSE

The source code of our solver have been made freely avail-
able under the MIT license. Note that the license of the M4RI
library (which is used to implement Gaussian elimination) is
GPLv2+.
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